Can Copper Prevent Ebola Spread?

While experts have maintained that precautionary measures like hand washing, disinfecting surfaces and quarantine procedures alone are insufficient to contain the spread of the deadly virus, a new study offers promising evidence that copper vessels could help prevent the spread of Ebola. Researchers at the University of Southampton reveal that antimicrobial copper � engineering materials with intrinsic hygiene benefits � could be a valuable addition to these existing measures. The US Centres for Disease Control and Prevention (CDC) note the Ebola virus is transmitted through direct contact with the bodily fluids of an infected person, or through exposure to contaminated objects. Viruses similar to Ebola are susceptible to a broad range of surface disinfectants, however testing against Ebola itself cannot currently be conducted due to limited access to laboratories with the required safety clearances. The CDC has therefore instructed hospitals to use disinfectants with proven efficacy against resistant viruses such as norovirus, adenovirus and poliovirus. Peer-reviewed and published data from laboratory studies conducted by Professor Bill Keevil demonstrates copper�s ability to rapidly and completely inactivate norovirus. Recent work in Germany has also explored its effectiveness against other viral biothreat agents. Clinical trials conducted in the UK, US and Chile have shown surfaces made from solid copper or copper alloys � collectively termed �antimicrobial copper� � continuously reduce surface contamination by greater than 80 per cent. These results indicate a potential role for antimicrobial copper touch surfaces in preventing the spread of Ebola, researchers said. �Based on our research on viruses of similar genetic structure, we expect copper surfaces to inactivate Ebola, and to help control the spread of this virus if employed for publicly-used touch surfaces,� said Keevil. Antimicrobial copper surfaces have been described as a �no touch� solution, meaning that no special measures or human intervention are required for it to continuously kill pathogens, in between regular cleans. Replacing frequently-touched surfaces, such as door handles, taps and light switches, with solid copper or copper alloy equivalents will provide a more hygienic environment, with fewer bacteria and viruses available to spread infections, researchers said. The use of antimicrobial copper surfaces could offer an additional method of controlling the current spread of Ebola, they said. How does Ebola spreads? Through infected body fluids: Ebola is transmitted through direct contact or skin contact with body fluids of an infected person. Since the virus is present in body fluids including blood, semen, sweat, urine, saliva, feaces, vomit, etc., if a healthy person comes in contact with them the virus enters the system. According to experts the virus enter through open wounds, blood transfusions or through the eyes, ears, mouth, nostrils, genital area. Following transmission, the virus causes infection in a span of two to 21 days depending on the severity of the viral attack.